Model-free machine learning methods for personalized breast cancer risk prediction -SWISS PROMPT

Chang Ming, 22.11.2017 University of Basel

Swiss Public Health Conference 2017

Breast Cancer & personalized cancer prevention

- In Switzerland each year, about 5'250 women develop breast cancer and 1'350 die from it.¹
- Prediction model in personalized cancer prevention:
 - ability to forecast breast cancer risk or presence before clinical symptoms appear
 - opportunity to act on the breast cancer through early intervention.
 - guide surveillance and preventive treatment (such as increased frequency of mammography, prophylactic surgery, chemoprevention and medication)

What is a good prediction model?

Calibration

- Does the model correctly predict the number of people will develop breast cancer?
- Discriminatory accuracy
 - Does the model correctly predict exactly who will develop breast cancer?

The Area Under an ROC Curve

 The area measures discrimination, that is, the ability of the test to correctly classify those with and without the disease

.90-1 = excellent (A) .80-.90 = good (B) .70-.80 = fair (C) .60-.70 = poor (D) .50-.60 = fail (F)

Population level or Personalized level?³

Table 1

Examples of risk prediction models for asymptomatic individuals that have been validated in different populations

	Summary of performance in validation studies			
Risk model	Discrimination (AUROC, 95% CI)	Calibration (O/E, 95% CI)		
Breast (<u>Meads <i>et al</i>, 2012</u>)				
Colditz	0.63 (0.63–0.64)	1.01 (0.94–1.09)		
Gail 2	0.63 (0.59–0.67)	0.95 (0.88–1.01)		
Rosner and Colditz	0.57 (0.55–0.59)	0.96 (0.92–1.02)		
Tyrer and Cusick 0.762 (0.70–0.82) ^{<u>a</u>}		1.09 (0.85–1.41) ^{<u>a</u>}		

Gail model

- **Based** on case-control data from 284,780 women.
- Risk factors included :
 - Age
 - Reproductive history
 - Family history
 - Personal history (Biopsies)
- Validated using data from NCI's Surveillance, Epidemiology, and End Results (SEER).
 - Caucasian women and African American
 - Asian and Pacific Islander
- Guideline based on Gail model

From The American Society of Clinical Oncology (ASCO)

five-year risk ≥1.67%: Clinical breast examination at least once per year, annual mammogram, consider high-risk counseling or risk reducing medication.(e.g. tamoxifen)

Universität Basel

Chang Ming, 22.11.17

BOADICEA model

- Based on 2785 UK families
- Included Family pedigree and cancer history, Mutation BRCA 1&2, Ethnicity, and several Biomarkers
- Validated in a large series of families from UK genetics clinics
- In UK and several European countries, it is recommended as a risk assessment tool in clinical guideline
- In Newest UK guideline, Lifetime risk > 30%
 - Screening starting at 30-35 yrs
 - Consider annual MRI starting at 30 yrs
 - Clinical breast exam (annual)
 - Preventive treatment: Consider chemoprevention and preventive mastectomy

Methodology – Machine learning -learn from experience

Three characters:

Learning

 Machine learning algorithms use computational methods to "learn" information directly from data without relying on a predetermined equation as a model.

Learning more

• The algorithms adaptively improve their performance as the number of samples available for learning increases.

Generate insight for prediction

Leaning techniques/algorithms

--How should the machine search for "pa --Depends on whether known responses learning >>>**Supervised**

Classification techniques

predict discrete responses

- Binary vs. Multiclass Classification
- Logistic Regression
- k Nearest Neighbor (kNN)
- Neural Network
- Bagged and Boosted Decision Trees

Regression techniques

predict continuous responses

- Generalized Linear Model
- Gaussian Process Regression Model

Study Setting and Materials

- ML v.s. Gail
 - a random population-based
 - US breast cancer patients and their cancer-free female relatives (N=1232)
 - CDC
- ML v.s. BOADICEA
 - a clinic-based sample
 - Swiss breast cancer patients and cancer-free women seeking genetic evaluation and/or testing
 - Geneva University Hospitals (N=1967 Families and 112,482 individual) collected since 1998

Results1

- Always same input data for Gail v.s. ML
 - 1. simulated, with no signal; N=800

	Gail	ML-ada
acc	0.345	0.384

1. simulated, with artificial signal; N=800

	Gail	ML-ada
acc	0.711	0.958

Adapt boosting (ada) Linear discriminant (Ida) Random forest (rf) Linear Model (Im) Logistic Regression (Logistic) k-Nearest Neighbors algorithm (k-NN) Quadratic Discriminant (qda)

2. Real data N=1232

	Gail	ML- ada	ML-Ida	ML-rf	ML- logistic	ML- knn	ML- qda	ML-Im
acc	0.658	0.897	0.828	0.734	0.855	0.783	0.782	0.334

Results2

- Always same input data for BOADICEA v.s. ML
 - 1. simulated, with no signal; N=800

	BOADICEA	ML-Logistic	ML-ada
acc	0.279	0.301	0.234

1. simulated, with artificial signal; N=800

	BOADICEA	ML-Logistic	ML-ada
acc	0.699	0.953	0.939

Adapt boosting (ada) Linear discriminant (lda) Random forest (rf) Linear Model (lm) Logistic Regression (Logistic) k-Nearest Neighbors algorithm (k-NN) Quadratic Discriminant (qda)

2. Real data N=112,482

	BOADICEA	ML-rf	ML- Logistic	ML-Ida	ML- ada	ML- knn	ML- qda	ML-Im
асс	0.671	0.924	0.894	0.881	0.625	0.858	0.812	0.534

University of Basel

Conclusion and Next steps

Advantages of ML:

- Big improvement in predictive discriminatory accuracy
- Not limited by various epidemiology assumptions
- Model-free: Free to add any risk factors, e.g Mammographic density
- The "bigger" the data, the better the prediction
- Easy adaption in application

Limitations: If not having enough data

SWISS PROMPT:

- first project internationally to apply machine-learning methods in individual breast cancer risk prediction and compares its predictive accuracy with existing models;
- first risk prediction model which is developed using primarily data from Swiss populations;
- will incorporate additional risk factors than existing models. E.g. Modifiable and non-modifiable risk factors

Reference

- 1. BOUCHARDY MAGNIN, Christine, LOREZ, Matthias, ARNDT, Volker. Effects of age and stage on breast cancer survival in Switzerland. In: Bulletin suisse du cancer
- Gagnon, J. et al. "Recommendations on Breast Cancer Screening and Prevention in the Context of Implementing Risk Stratification: Impending Changes to Current Policies." Current Oncology 23.6 (2016): e615–e625. PMC. Web. 20 Nov. 2017.
- 3. Usher-Smith, Juliet et al. "Risk Prediction Tools for Cancer in Primary Care." British Journal of Cancer 113.12 (2015): 1645–1650. PMC. Web. 20 Nov. 2017.
- 4. Gail MH, Brinton LA, Byar DP, Corle DK, Green SB, Shairer C, Mulvihill JJ: Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst 81(24):1879-86, 1989.
- 5. W. L. Chao, J. J. Ding, "Integrated Machine Learning Algorithms for Human Age Estimation", NTU, 2011.
- 6. Easton et al., Nature 2007; 447: 1087-1095
- 7. Cox et al., Nature Genetics 2007; 39: 352-358
- 8. Stacey et al., Nature Genetics 2007; 39: 865-869
- 9. Friedman, Hastie, and Tibshirani, "Additive logistic regression: a statistical view of boosting", Annals of Statistics, 2000
- 10. Christopher Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995

Thank you for your attention.