Variability in height and body shape since the 19th century

Kaspar Staub

Basel, 22. November 2017
Background & Aim

- **Public health surveillance**: Based on ongoing, systematic collection, analysis, and interpretation of data.

- Continuous monitoring of nutritional status and body shape will remain a cornerstone in future non-communicable diseases (NCD) strategies.

- **Aim**: Extend the time context of body shape-monitoring from the most up-to-date data not only until the 1990s but further back covering the last 140 years.

- **Approach**: The distribution (and not only the population mean) of a morphological feature best reflects the range of existing phenotypes and variability.

- In order to accurately monitor changes in body shape over a longer time, comparable data are essential. **Example: Swiss conscripts over the last 140 years.**
Data: Conscription in Switzerland 1875 until today

- **Standardized and universal recruitment procedure** since 1875 (remained unchanged).

- All young men are called to **conscription in the year they turn 19**.

- **High coverage**: Population of conscripts is >90% identical with Swiss resident male population at age ca. 19.

- Body measurements (taken by medics) for **all conscripts** (irrelevant if capable to serve or not).

- 2004-2014: 65% of conscripts agreed to having blood samples taken.
Height: +15cm in 140y, no more increase since 20-30y

- Average height: +15cm in 140 years, start in the 1870s
- From low Southern-European level to Central-European level by WW1
- Large regional differences
- Plateau: No more height increase since 2-3 decades

- Height distribution shifted to the right on the x-axis
- > 175 cm - 1878/79: 5.48%, 2008/09: 71.13%
- 19th century: ca. 6% < 150cm, height was slightly left-skewed (-0.8), SD was 7.5cm, and very short men were over-represented!
- Main reasons: Widespread iodine deficiency and low living standard?
Weight/BMI: Increase, plateau only in the last 4-6 y

Floris et al., Bericht BAG, 2016; Staub et al., Obes Facts, 2016
BMI: From under-nutrition to over-nutrition

- Weight and BMI became increasingly right-skewed.

- Underweight in the 19th century vs. overweight in the 21st century.

- BMI relations between the upper and the lower end of the socio-economic strata changed inversely from the 19th century to modern times.
Evolutionary aspects…

- The body of young men adapted differently to varying living conditions (life history theory):
 1. Less investment in height and weight under conditions of under-nutrition and food uncertainty (before 1870s).
 2. More investment in height under more stable nutritional conditions (1870s-1970s).
 3. Development of obesity during conditions of plateaued height growth, over-nutrition, and decreasing physical activity (the last 20-30 years).

- Phenotypical plasticity (adaptively responding to the environment).

- Thrifty-Gene Hypothesis: Mismatch between evolved biology of human body and modern life. The survival advantages of the ability to store fat in the unstable agrarian society became a disadvantage in modern and stable consumer society.

Staub et al., Obes Facts, 2016
BMI distribution became broader at both ends

- BMI: Distance from median steadily increased at lower and upper end
- For some metabolic parameters today: Underweight is as bad as overweight

Staub et al., Evol Med Public Health, in review
Groups at risk: Small area clusters of obesity

- SEP of neighborhood is important as well
- Small area clusters: Patterns do not follow administrative boundaries
Discussion

- **Limitations**: Conscription data depict only young men with Swiss citizenship!

- **Multifactorial causes for changes in height and body shape**: Genetics, epigenetics, environment, behavior, etc., but also evolutionary aspects.

- Focus on shape and position of distributions (variability) adds information

- **Groups at risk** can change over time, and they do not necessarily follow administrative categories (cantons, etc.) > Need for personalization

- **Hypothesis**: Advances in medicine > reduced premature mortality and increased probability of reaching reproductive age (>99%) > **Relaxed natural selection** > accelerated genetic change, higher variability, accumulation of harmful mutations, altered genes affecting energy balance and metabolism?

- **BMI is not ideal** (weight by muscle or fat?), additional information is needed…
After a successful pilot study in 2016 waist circumference will be introduced as additional standard measurement in the conscription process of the Swiss Armed Forces from 2018 onwards.
Outlook beyond BMI II: 3D Full Body Scans

Figure 1 Raw scan outputs of five selected test subjects showing the full range of observed body shapes. Subject (A) was the thinnest (scanned BMI = 16.85 kg/m\(^2\)) and subject (E) was the heaviest (BMI = 29.48 kg/m\(^2\)). Subject (B) represented the “healthy” body shape type with a BMI of 20.95 kg/m\(^2\). Subjects (C and D) had a similar BMI (27.94 vs. 27.73 kg/m\(^2\)), but in contrast to subject (C), subject (D) represented the athletic body shape type (reporting 17 h of sport per week). The faces of the subjects have been pixelated and anonymised.

- Not only conscripts: Assess body shape *in toto* via 3D full body scans
Thank you!

Funding: Mäxi Stiftung, Swiss Federal Office of Public Health, Swiss National Science Foundation

Contributions: Nicole Bender, Frank Rühli, Joël Fliris, Ulrich Woitek, Nikola Koepke, Christian Pfister, Radoslav Panczak, Marcel Zwahlen, Matthias Egger, Thomas Abel, Leo Held, David Fäh, Tobias Schoch, Barry Bogin, Maciej Henneberg, Jonathan C. Wells, Thomas Wyss, Franz Frey, Tiziano Angelelli, Nadine Stoffel-Kurt, Andrea Poffet, etc.

Data: Chief Medical Surgeon Swiss Armed Forces (General Dr. med. A. Stettbacher) and Logistikbasis der Armee – Sanität

Web: www.iem.uzh.ch

Facebook: https://www.facebook.com/uzh.zem.ch **Twitter:** https://twitter.com/evmed_ch